
Software Engineering

and Architecture

Roles, Responsibility, Behavior,

Protocol

Programming Models

• “The way we think about programs”…

– A program is a sequence of instructions operating on data

• Procedural thinking (How CPUs actually operate)

– Python, C, Pascal, Assembler

– A program is a sequence of pure functions, taking input and

producing output

• Functional thinking (Mathematical computer science likes that a lot)

– F#, Scala, Haskel, ML

– A program is organized as interacting objects, encapsulating both

data and operations

• Object-oriented thinking (Closer to how humans think)

– C#, Java, C++

CS@AU Henrik Bærbak Christensen 2

Object-Orientation

• Object-Orientation (OO) is about objects…

• But what is an object?

• It turns out – that there are several ways of thinking…

• Language centric perspective:

• Object = Data + Actions

• Model centric perspective:

• Object = Model element in domain

• Responsibility centric perspective:

• Object = Responsible for providing service

 in community of interacting objects
CS@AU Henrik Bærbak Christensen 3

Competing or Complementing?

• These three models/ideas/perspectives

– Language centric perspective

– Model centric perspective

– Responsibility centric perspective

• … are not “right or wrong” or competitors…

• Rather they are all valid and sort of complement each

other…

• However, as ‘design and thinking tool’ for developing

complex software architectures, you need to master all!

CS@AU Henrik Bærbak Christensen 4

Language Perspective

• Language perspective

– An object is a set of methods and variables grouped together

– Yes, this is true!

• The compiler treats it like that…

• But it does not help me to

develop maintainable architectures and programs 

– No guidance on “what classes/what methods” to produce…

• WarStory…
CS@AU Henrik Bærbak Christensen 5

Model Perspective

• Model centric focus

– focus on concepts and relations in the Domain

• generalization, association, composition

– problem domain modeling

– object = part of model

CS@AU Henrik Bærbak Christensen 6

Strong Scandinavian Research Impact
Simula

1960-1990.
Alan Kay / Xerox PARC / Smalltalk 80

1980

Model Perspective

• Model centric focus

– A program execution is viewed as a

 physical model simulating the

 behavior of either a real or imaginary

 part of the world.

– [Madsen, Møller-Pedersen, Nygaaard 1993]

• Talk to customer and identify

“things” they talk in terms of.

Then “model” these in the

program: Domain Modelling.

CS@AU Henrik Bærbak Christensen 7

Model Perspective

• This perspective helps me greatly in my architecture

and design of my program…

– “We want a card game played by two heroes”

– Better make a Card class and a Hero class

• Design process is a Who / What cycle

– Who: the objects comes first

– What: the behavior comes second

• Define the classes, next define their methods…

CS@AU Henrik Bærbak Christensen 8

Critique

• I developed using this paradigm for 10 years…

• And it caused me great trouble. I always ended up in

• The Blob / God class

• The issue is that ‘domain’ (= core business concepts)

only covers a fraction of all the objects we need for a

large IT system!

– Design patterns do not appear in the domain. UI does not appear

in the domain. Databases, networks, fault tolerance, security,

performance optimizations, testing, etc. does not appear in the

domain…

CS@AU Henrik Bærbak Christensen 9

Example: SkyCave

• From my Microservice and DevOps course

– Domain model:

• Three Concepts

– Implementation model:

• 94 classes

• Patterns, dep. injection,

network, databases,

caching, availability,

performance, …

CS@AU Henrik Bærbak Christensen 10

Example: HotStone

• If strictly Model based
– A) Identify landscape of concepts

– B) Distribute behavior over this landscape

• … then I would only have
– 3 to 5 classes

• My solution code have over
100 interfaces/classes!
– Strategies, dep inject,

distribution, GUI, caching,
testing, name services,
logging, database recordings,
…

CS@AU Henrik Bærbak Christensen 11

Critique

• Design process is a Who / What cycle

– Who: the objects comes first

– What: the behavior comes second

• … will make me end up with few classes with zillions of

methods covering all kinds of aspects 

– That is: The Blob

CS@AU Henrik Bærbak Christensen 12

Not a Wrong Thinking per se…

• There is a lot of merits to Domain Modelling

– Idea of Bounded Contexts is a prevailing way

of organizing microservices

• The point is, if you only create objects/

classes from these domain concept, they

will be overcrowded by too many

responsibilities… Blobbing…

CS@AU Henrik Bærbak Christensen 13

Responsibility-centric

Focus

• Responsibility centric focus

– Role, responsibility, and collaboration

– Object = provider of service in community

– Leads to strong behavioral focus

– CRC cards (Kent Beck, Rebecca Wirfs-Brock)

CS@AU Henrik Bærbak Christensen 15

Another Definition

• Another definition:

• An object-oriented program is structured as a
community of interacting agents called objects. Each

object has a role to play. Each object provides a service
or performs an action that is used by other members of

the community.
– Budd 2002

• Shifting focus
– away from “model of real world”

– towards “community”, “interaction”, and “service”

CS@AU Henrik Bærbak Christensen 16

Service

• Budd’s definition is more skewed towards the

functionality of the system.

• At the end of the day, software pays the bill by

providing functionality that the users need, not by

being a nice model of the world!

• Services are what developers get paid to create!

CS@AU Henrik Bærbak Christensen 17

What/Who

• Timothy Budd:

• “Why begin the design process with an analysis of

behavior? The simple answer is that the behavior of a

system is usually understood long before any other

aspects.”

• What / Who cycle

– What: identify behavior / responsibility  roles

– Who: identify objects that may play the roles

• or even invent objects to serve roles only

– Larman “Pure fabrication”;

CS@AU Henrik Bærbak Christensen 18

Implications

• Responsibility perspective:

– A) Analyze behavior (what?)

– B) Assign objects (who?)

• Guidelines:

– A) Behavior abstracted  landscape of responsibilities

– B) Implement responsibilities in objects

• Analysis

– Resemble human organizations – often roles are invented

– Still need to define the objects ☺

• That is, the person(s) to fill the role

CS@AU Henrik Bærbak Christensen 19

The Central Concepts

A strong mind-set for

designing flexible software

“Theory of Compositional Designs”

How people organize work!

• The central concepts:

– Behavior: What actually is being done

• ”Henrik sits Sunday morning and writes these slides”

– Responsibility: Being accountable for answering request

• ”Henrik is responsible for teaching responsibility-centric design”

– Role: A function/part performed in particular process

• ”Henrik is the course teacher of SWEA”

– Protocol: Convention detailing the expected sequence of

interactions by a set of roles

• ”Teacher: ‘Welcome’ => Students: stops talking and starts listening”

• Student asks question; teacher is expected to answer

CS@AU Henrik Bærbak Christensen 21

It is all Roles and Protocol

• Any complex human organization relies completely on

each person understanding roles and protocols

– If I get hospitalized, I understand the roles of patient, nurses, and

physicians

– CEOs, managers, software developers, architects, testers, sales

people, …

– Hardship of marriage: finding the proper roles and protocols ☺

• Role models?

CS@AU Henrik Bærbak Christensen 22

Roles decouples

• The primary point of roles:

• It provides a higher abstraction than that of the

individual person

• I know my responsibilities and the protocol once I am

assigned a known role

– Teacher role defines what my responsibilities are

• I can collaborate efficiently with others once I know their

roles

– Student role defines what I can expect them to do

CS@AU Henrik Bærbak Christensen 23

Many-to-many relation

• Big company

– One person is manager, one software architect, two lead

developers, and ten software developers

• Small company

– Same person is manager, software architect, lead and software

programmer ☺

• That is: One individual may serve many roles

• Henrik: Teacher, researcher, tax payer, company owner,

tourist, father, husband, …

CS@AU Henrik Bærbak Christensen 24

Interface Segregation Principle

Many-to-many relation

• Hospital

– Nurses attend the patients

– And different persons serve the role during shifts

• That is: One role may be served by many persons

CS@AU Henrik Bærbak Christensen 25

Substitution Principle

Role concept

• The role concept allows us to use either approach

(who/what or what/who) because “what” can be

expressed as roles.

Object

Relation

Role

Role makes

service a first-

class citizen of

our design

vocabulary

CS@AU Henrik Bærbak Christensen 26

Roles may be invented

• Roles may be invented by need.

• A pre-school kindergarten invented a Flyer role whose

responsibility it was to ‘catch’ all interruptions to make the

daily work more fluent for the ‘non-flyer’ pedagogues.

CS@AU Henrik Bærbak Christensen 27

Enough Academic B…….

What should I do when designing???

Software as Organizations

• The proposal:

– Think software design in terms of

• The responsibilities to be served

• Group then into cohesive roles

• And define their protocols, how are they going to collaborate

• That is:

• Design software as an Organization

CS@AU Henrik Bærbak Christensen 29

Super simple example

• The Pay station

• Now, one responsibility has been put into another role:

the RateStrategy.

– And different objects may play that role…

CS@AU Henrik Bærbak Christensen 30

Another Example

• HotStone

– Game (= manager/coordinator)

• Role: Is responsible for overall game mechanics

– Card handling, hand, battlefield, attacks, turn taking, rules enforcer…

• Collaborates with lots of other roles

– Hero, Card (= specialists)

• Role: Primary state holders + simple, local, state changes

– Owner, health, mana, …

– WinnerStrategy (= super-specialist ☺)

• Role: Is responsible for calculating who has won

– Access information from other roles to do the calculation

– DeckBuildingStrategy

• Role: Is responsible for creating a deck

– ect.

CS@AU Henrik Bærbak Christensen 31

Yet Another Example

• SkyCave

– Massive multiplayer on-line exploration experience

• (Some of the many) Roles:

– Cave, Player, Room

• Domain abstractions

– Player with name may move in rooms in cave, and create new rooms to share with

other players

– Broker
• Responsible for remote method calls (actually 6 roles!)

– CaveStorage

• Responsible for persisting rooms and players

– SubscriptionService

• Responsible for authenticating player login

CS@AU Henrik Bærbak Christensen 32

MicroService
paradigm!

Programming Mechanics

• Use interface to define a role

– Methods embody the responsibilities

– (the protocol must be understood in the design)

• Still lack programming constructs to describe these 

• Classes implementing an interface allow objects to be

instantiated to serve the roles

• (Simple roles with no need for variability – just use a

class)

– Typical example is ”records” = dump data containers

• Java 17 directly has a ‘record’ type (at last…)

CS@AU Henrik Bærbak Christensen 33

A many-to-many relation

• Interface – Object is a many-to-many relation

– One role/interface implemented by many objects

• Interface Game has been implemented in 70+ ways in your work

– One object may implement many interfaces

• StandardGame is both a ‘Game’ (UI uses this) and an

‘InternalMutableGame’ (Strategies uses this)

CS@AU Henrik Bærbak Christensen 34

Object Role/Interface
* *

Language Support

• I find support for interface to define a role extremely

important in a language!

• Rust supports Traits

• Scala also has Traits

CS@AU Henrik Bærbak Christensen 35

Language Support

• Go has interface, but no way of expressing that a certain

‘object’ needs to implement it

– Duck typing

– No way of expressing that

CardStruct ‘implements Card’

CS@AU Henrik Bærbak Christensen 36

An Example

Of identifying roles instead of

domain concepts

HotGammon

• Backgammon

requirements:

– Offer GUI for two players

– Guaranty proper play

• Variants

– new rules for which moves

are legal

– how many moves you can

make per turn?

– how the board is initially set

up?

CS@AU Henrik Bærbak Christensen 38

Same challenge – different designs

Model perspective: Responsibility perspective:

CS@AU Henrik Bærbak Christensen 39

Who is responsible for validating moves?

Model perspective: Responsibility perspective:

What is the cost of altering algorithm to

compute if move is valid?

How to change it at run-time?

CS@AU Henrik Bærbak Christensen 40

Summary

Summary

• The central concepts:

– Behavior: What actually is being done

• ”Henrik sits Sunday morning and writes these slides”

– Responsibility: Being accountable for answering request

• ”Henrik is responsible for teaching responsibility-centric design”

– Role: A function/part performed in particular process

• ”Henrik is the course teacher”

– Protocol: Convention detailing the expected sequence of

interactions by a set of roles

• ”Teacher: ‘Welcome’ => Students: stops talking and starts listening”

CS@AU Henrik Bærbak Christensen 42

Perspectives

• Three different perspectives on OO

– Language: Important because code is basically only

understandable in this perspective

– Model: Important because it gives us good inspiration for

organizing the domain code

– Responsibility: Important because it allows us to build highly

flexible software with low coupling and high cohesion

• They do not have to be in conflict – they build upon each

other...

CS@AU Henrik Bærbak Christensen 43

Role Perspective

• Thinking in responsibilities grouped into roles is a strong

design model

– And it is not only relevant for Object-Oriented design thinking

• It works well in the imperative design world as well

– As evident that Rust/Go and others have ‘interface’ constructs

• Regarding functional programming? Yes, why not

– But I am no expert so…

CS@AU Henrik Bærbak Christensen 44

Summary

• Design in terms of what roles and responsibilities there

are in a system.

• Express these as interfaces with appropriate additional

documentation.

– Or ‘traits’ in some languages

• Implement the roles by concrete classes.

• Roles should encapsulate points of variability

CS@AU Henrik Bærbak Christensen 45

