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Roles, Responsibility, Behavior, 

Protocol



Programming Models

• “The way we think about programs”…

– A program is a sequence of instructions operating on data

• Procedural thinking (How CPUs actually operate)

– Python, C, Pascal, Assembler

– A program is a sequence of pure functions, taking input and 

producing output

• Functional thinking (Mathematical computer science likes that a lot)

– F#, Scala, Haskel, ML

– A program is organized as interacting objects, encapsulating both 

data and operations

• Object-oriented thinking (Closer to how humans think)

– C#, Java, C++
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Object-Orientation

• Object-Orientation (OO) is about objects…

• But what is an object?

• It turns out – that there are several ways of thinking…

• Language centric perspective:

• Object = Data + Actions

• Model centric perspective:

• Object = Model element in domain

• Responsibility centric perspective:

• Object = Responsible for providing service

 in community of interacting objects
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Competing or Complementing?

• These three models/ideas/perspectives

– Language centric perspective

– Model centric perspective

– Responsibility centric perspective

• … are not “right or wrong” or competitors…

• Rather they are all valid and sort of complement each 

other…

• However, as ‘design and thinking tool’ for developing 

complex software architectures, you need to master all!
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Language Perspective

• Language perspective

– An object is a set of methods and variables grouped together

– Yes, this is true!

• The compiler treats it like that…

• But it does not help me to

develop maintainable architectures and programs 

– No guidance on “what classes/what methods” to produce…

• WarStory…
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Model Perspective

• Model centric focus

– focus on concepts and relations in the Domain

• generalization, association, composition

– problem domain modeling

– object = part of model
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Model Perspective

• Model centric focus

– A program execution is viewed as a

 physical model simulating the

 behavior of either a real or imaginary

 part of the world.

– [Madsen, Møller-Pedersen, Nygaaard 1993]

• Talk to customer and identify

“things” they talk in terms of.

Then “model” these in the

program: Domain Modelling.
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Model Perspective

• This perspective helps me greatly in my architecture 

and design of my program…

– “We want a card game played by two heroes”

– Better make a Card class and a Hero class

• Design process is a Who / What cycle

– Who: the objects comes first

– What: the behavior comes second

• Define the classes, next define their methods…
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Critique

• I developed using this paradigm for 10 years…

• And it caused me great trouble. I always ended up in

• The Blob / God class

• The issue is that ‘domain’ (= core business concepts) 

only covers a fraction of all the objects we need for a 

large IT system!

– Design patterns do not appear in the domain. UI does not appear 

in the domain. Databases, networks, fault tolerance, security, 

performance optimizations, testing, etc. does not appear in the 

domain…
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Example: SkyCave

• From my Microservice and DevOps course

– Domain model: 

• Three Concepts

– Implementation model:

• 94 classes

• Patterns, dep. injection,

network, databases,

caching, availability,

performance, …
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Example: HotStone

• If strictly Model based
– A) Identify landscape of concepts 

– B) Distribute behavior over this landscape

• … then I would only have
– 3 to 5 classes

• My solution code have over
100 interfaces/classes!
– Strategies, dep inject, 

distribution, GUI, caching,
testing, name services,
logging, database recordings,
… 
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Critique

• Design process is a Who / What cycle

– Who: the objects comes first

– What: the behavior comes second

• … will make me end up with few classes with zillions of 

methods covering all kinds of aspects 

– That is: The Blob
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Not a Wrong Thinking per se…

• There is a lot of merits to Domain Modelling

– Idea of Bounded Contexts is a prevailing way

of organizing microservices

• The point is, if you only create objects/

classes from these domain concept, they

will be overcrowded by too many 

responsibilities… Blobbing…
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Responsibility-centric



Focus

• Responsibility centric focus

– Role, responsibility, and collaboration

– Object = provider of service in community

– Leads to strong behavioral focus

– CRC cards (Kent Beck, Rebecca Wirfs-Brock)
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Another Definition

• Another definition:

• An object-oriented program is structured as a 
community of interacting agents called objects. Each 

object has a role to play. Each object provides a service 
or performs an action that is used by other members of 

the community.
– Budd 2002

• Shifting focus
– away from “model of real world”

– towards “community”, “interaction”, and “service”
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Service

• Budd’s definition is more skewed towards the 

functionality of the system.

• At the end of the day, software pays the bill by 

providing functionality that the users need, not by 

being a nice model of the world!

• Services are what developers get paid to create!
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What/Who

• Timothy Budd:

• “Why begin the design process with an analysis of 

behavior? The simple answer is that the behavior of a 

system is usually understood long before any other 

aspects.”

• What / Who cycle

– What: identify behavior / responsibility  roles

– Who: identify objects that may play the roles

• or even invent objects to serve roles only

– Larman “Pure fabrication”; 
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Implications

• Responsibility perspective:

– A) Analyze behavior (what?) 

– B) Assign objects (who?)

• Guidelines:

– A) Behavior abstracted  landscape of responsibilities

– B) Implement responsibilities in objects

• Analysis

– Resemble human organizations – often roles are invented

– Still need to define the objects ☺

• That is, the person(s) to fill the role
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The Central Concepts

A strong mind-set for 

designing flexible software

“Theory of Compositional Designs”



How people organize work!

• The central concepts:

– Behavior: What actually is being done

• ”Henrik sits Sunday morning and writes these slides”

– Responsibility: Being accountable for answering request

• ”Henrik is responsible for teaching responsibility-centric design”

– Role: A function/part performed in particular process

• ”Henrik is the course teacher of SWEA”

– Protocol: Convention detailing the expected sequence of 

interactions by a set of roles

• ”Teacher: ‘Welcome’ => Students: stops talking and starts listening”

• Student asks question; teacher is expected to answer
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It is all Roles and Protocol

• Any complex human organization relies completely on 

each person understanding roles and protocols

– If I get hospitalized, I understand the roles of patient, nurses, and 

physicians

– CEOs, managers, software developers, architects, testers, sales 

people, …

– Hardship of marriage: finding the proper roles and protocols ☺

• Role models?
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Roles decouples

• The primary point of roles:

• It provides a higher abstraction than that of the 

individual person

• I know my responsibilities and the protocol once I am 

assigned a known role

– Teacher role defines what my responsibilities are

• I can collaborate efficiently with others once I know their 

roles

– Student role defines what I can expect them to do
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Many-to-many relation

• Big company

– One person is manager, one software architect, two lead 

developers, and ten software developers

• Small company

– Same person is manager, software architect, lead and software 

programmer ☺

• That is: One individual may serve many roles

• Henrik: Teacher, researcher, tax payer, company owner, 

tourist, father, husband, …
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Many-to-many relation

• Hospital

– Nurses attend the patients

– And different persons serve the role during shifts

• That is: One role may be served by many persons
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Role concept

• The role concept allows us to use either approach 

(who/what or what/who) because “what” can be 

expressed as roles.

Object

Relation

Role

Role makes 

service a first-

class citizen of 

our design 

vocabulary

CS@AU Henrik Bærbak Christensen 26



Roles may be invented

• Roles may be invented by need. 

• A pre-school kindergarten invented a Flyer role whose 

responsibility it was to ‘catch’ all interruptions to make the 

daily work more fluent for the ‘non-flyer’ pedagogues.
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Enough Academic B…….

What should I do when designing???



Software as Organizations

• The proposal:

– Think software design in terms of 

• The responsibilities to be served

• Group then into cohesive roles

• And define their protocols, how are they going to collaborate

• That is: 

• Design software as an Organization
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Super simple example

• The Pay station

• Now, one responsibility has been put into another role: 

the RateStrategy.

– And different objects may play that role…
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Another Example

• HotStone

– Game (= manager/coordinator)

• Role: Is responsible for overall game mechanics 

– Card handling, hand, battlefield, attacks, turn taking, rules enforcer…

• Collaborates with lots of other roles

– Hero, Card (= specialists)

• Role: Primary state holders + simple, local, state changes

– Owner, health, mana, …

– WinnerStrategy (= super-specialist ☺)

• Role: Is responsible for calculating who has won

– Access information from other roles to do the calculation

– DeckBuildingStrategy

• Role: Is responsible for creating a deck

– ect.
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Yet Another Example

• SkyCave

– Massive multiplayer on-line exploration experience

• (Some of the many) Roles:

– Cave, Player, Room

• Domain abstractions

– Player with name may move in rooms in cave, and create new rooms to share with 

other players

– Broker
• Responsible for remote method calls (actually 6 roles!)

– CaveStorage

• Responsible for persisting rooms and players

– SubscriptionService

• Responsible for authenticating player login
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Programming Mechanics

• Use interface to define a role

– Methods embody the responsibilities

– (the protocol must be understood in the design)

• Still lack programming constructs to describe these 

• Classes implementing an interface allow objects to be 

instantiated to serve the roles

• (Simple roles with no need for variability – just use a 

class)

– Typical example is ”records” = dump data containers

• Java 17 directly has a ‘record’ type (at last…)
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A many-to-many relation

• Interface – Object is a many-to-many relation

– One role/interface implemented by many objects

• Interface Game has been implemented in 70+ ways in your work

– One object  may implement many interfaces

• StandardGame is both a ‘Game’ (UI uses this) and an 

‘InternalMutableGame’ (Strategies uses this)
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Language Support

• I find support for interface to define a role extremely 

important in a language!

• Rust supports Traits

• Scala also has Traits
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Language Support

• Go has interface, but no way of expressing that a certain 

‘object’ needs to implement it

– Duck typing

– No way of expressing that

CardStruct ‘implements Card’
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An Example

Of identifying roles instead of 

domain concepts



HotGammon

• Backgammon 

requirements:

– Offer GUI for two players

– Guaranty proper play

• Variants

– new rules for which moves 

are legal

– how many moves you can 

make per turn?

– how the board is initially set 

up?

CS@AU Henrik Bærbak Christensen 38



Same challenge – different designs

Model perspective: Responsibility perspective:
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Who is responsible for validating moves?

Model perspective: Responsibility perspective:

What is the cost of altering algorithm to 

compute if move is valid?

How to change it at run-time?
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Summary



Summary

• The central concepts:

– Behavior: What actually is being done

• ”Henrik sits Sunday morning and writes these slides”

– Responsibility: Being accountable for answering request

• ”Henrik is responsible for teaching responsibility-centric design”

– Role: A function/part performed in particular process

• ”Henrik is the course teacher”

– Protocol: Convention detailing the expected sequence of 

interactions by a set of roles

• ”Teacher: ‘Welcome’ => Students: stops talking and starts listening”
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Perspectives

• Three different perspectives on OO

– Language: Important because code is basically only 

understandable in this perspective

– Model: Important because it gives us good inspiration for 

organizing the domain code

– Responsibility: Important because it allows us to build highly 

flexible software with low coupling and high cohesion

• They do not have to be in conflict – they build upon each 

other...
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Role Perspective

• Thinking in responsibilities grouped into roles is a strong 

design model

– And it is not only relevant for Object-Oriented design thinking

• It works well in the imperative design world as well

– As evident that Rust/Go and others have ‘interface’ constructs

• Regarding functional programming? Yes, why not

– But I am no expert so…
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Summary

• Design in terms of what roles and responsibilities there 

are in a system.

• Express these as interfaces with appropriate additional 

documentation.

– Or ‘traits’ in some languages

• Implement the roles by concrete classes.

• Roles should encapsulate points of variability
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